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Adjoint approach of the spatial sensitivity to disturbances
of internal �ows with free surface
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SUMMARY

A local adjoint technique is developed in order to determine the most sensitive location to perturba-
tions of steady states near bifurcation points in the case of con�ned �ows with free-surface boundary.
Transitions to stationary or periodic �ows are studied. The method is validated by comparison of its
results with those given by a time approach. It is then applied to the stability study and the feedback
control of thermocapillary �ows in liquid bridge. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent years have seen growing interest in �ow control as well as in experimental works as
in numerical studies. Sensitivity analysis has been applied in a large number of research areas
such as uncertainty analysis [1], aerodynamic design optimization [2, 3], parameter estimation
[4], data assimilation [5] and inverse heat conduction problem [6]. The use of adjoint equations
in optimal control theory was �rst performed by Lions [7]. Introduced in �uid dynamics by
Pironneau [8] in 1974, it has been intensively used in aerodynamic shape design [2, 9–11]
and optimal error control [12]. In all of these numerical studies, the heart of the method is
an optimization procedure which uses an adjoint approach to compute the linear sensitivity
of an objective function with respect to a number of variables.
Hill [13] developed a local adjoint technique to study the in�uence of inhomogeneous wall

conditions and source terms in exciting two-dimensional Tollmien-Schlichting waves in the
Blasius �ow. A similar nonlocal technique was then applied by Luchini and Bottaro [14] in the
case of G�ortler vortices developing over a concave wall boundary layer and on the receptivity
of the boundary layer produced by the impulsive motion of a �at plate in its plane [15].
The receptivity analysis here is based on the upstream integration of the adjoint equations at
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the same computational cost as a forward integration of the direct problem. Andersson et al.
[16] calculated the optimal perturbations of a �at plate boundary layer by a similar technique.
Gadoin et al. [17] applied the method in order to determine the location of the maximum
receptivity of the boundary layer modes in a long di�erentially heated cavity.
The aim of the present paper is to provide a low-cost computer method, based on an adjoint

approach, which is able to determine the most sensitive location to disturbances, no more in
case of boundary layers �ows, as in the here above-mentioned studies, but in con�ned �ows
with free-surface boundary. The applications �eld is then very large and, to our knowledge,
unexplored till now.
The test con�guration is the side-heated liquid bridge, whose stability has been widely

explored [18, 19]. The motivation of the previous studies was to contribute to the understanding
of the hydrodynamics of �ows occurring in the �oating zone crystal growth process. Indeed,
experiments have shown that the oscillatory state of the thermocapillary convection �ow causes
detrimental striations in the chemical composition of the �nished single crystal [20]. Active
control was experimentally performed by installation of sensor/heater pairs on the free surface,
in order to suppress the oscillations [21]. The performance of the control depends on the
sensor/heater position. We shall show how our adjoint approach could help the experimenter.
This paper is organized as follows. Section 2 explains two ways to obtain the response

amplitude to a disturbance: a time-dependent approach and the adjoint approach. Section 3
presents the physical test con�guration and its mathematical model. The adjoint system is
deduced from the linearized Navier–Stokes equations and the associated boundary conditions.
Section 4 summarizes the used numerical tools. The adjoint method is validated by comparison
of the amplitudes of its responses to temperature and velocity disturbances with the amplitudes
given by the time approach. Several bifurcation types are tested. In Section 5, the method is
applied to the study of the stability of the liquid bridge with respect to the Prandtl number
values. Section 6 explains how the method can help the experimenter to control the �ow. We
conclude in Section 7.

2. SENSITIVITY ANALYSIS

2.1. Time-dependent approach

The linear stability study in hydrodynamics is generally based on the analysis of the eigen-
values of the operator resulting from the linearization of the Navier–Stokes equations and their
boundary conditions in the domain D. The �ow �eld U is decomposed into a steady-state U0
and a small amplitude disturbance u:

U=U0 + u (1)

Substituting into the Navier–Stokes equations and the boundary conditions yields the linearized
equations governing the evolution of small disturbances,

@u
@t
=L(U0; u) (2)
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with linearized boundary conditions B. The formal solution of these equations can be
written as

u= exp(tL(U0; u))u0 (3)

with u0 as the initial condition. Unfortunately, the operator exponential is very seldom
explicitly available. A common tool to deduce the behaviour of exp(tL(U0; u)) consists in
the calculation of characteristic values associated with Equation (2):

L(U0; ui)= �iui (4)

where �i and ui denote a particular eigenvalue and eigenvector of L. We have assumed that
there are no degeneracies and that L can be completely diagonalized. The dynamics of the
disturbances can then be deduced from the spectrum of L.
If the set ui spans the volume D of independent variables in which Equation (2) is de�ned,

then

u(t)=
+∞∑
i=0

ai exp(�it)ui (5)

Let us assume that the �i are ordered such that

∀i∈N∗
+ ∀j ∈N∗

+; {i¿ j}⇒{�(�i)¿�(�j)} (6)

∀i∈N∗
+ ∀j ∈N∗

+; {i¿ j; �(�i)=�(�j)}⇒{�(�i)¿�(�j)} (7)

If �1 is real, after a long time, the disturbance is given by

u(t) ∼
t→+∞ a1 exp(�1t)u1 (8)

If �1 is complex (�1 =�1 + i!1, u1 = ur
1 + iui

1, �2 = �1, u2 = u1, �1 and u1 being the complex
conjugates of �1 and u1, respectively), the disturbance u being real, a1 is complex (a1 = ar

1+iai
1,

a2 = a1); after a long time, we have

u(t) ∼
t→+∞ 2 exp(�1t)[(ar

1u
r
1 − ai

1u
i
1) cos(!1t)− (ar

1u
i
1 + ai

1u
r
1) sin(!1t)] (9)

Hence, comparing the asymptotic time behaviour of two disturbances, u(1) and u(2), of the
same steady-state U0, results in the comparison of the moduli |a(1)1 | and |a(2)1 |. If

|a(1)1 |¿|a(2)1 |; then, after a long time, u(1) is greater than u(2) (10)

Accordingly, the asymptotic solutions of the linearized equations give a way to classify the
disturbances.

2.2. The adjoint approach

In order to �nd the spatial sensitivity to disturbances, we are using the adjoint equations,
relative to the inner product (f|g)= ∫ fg, g being the complex conjugate of g. The adjoint
operator and associated boundary conditions (L̃; B̃) are de�ned such that if u satis�es B and
ũ satis�es B̃, then [22]

(L(U0; u); ũ)= (u; L̃(U0; ũ)) (11)
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L(U0) and L̃(U0) have the same set of eigenvalues and the eigenvectors sets of the two
operators (ui) and (ũj), respectively, are bi-orthogonal:

(ui|ũj)= �i; j (12)

Let u(t=0)≡ �u=
∑+∞

i=0 aiui be a linear disturbance at time t=0 of the steady-state U0
characterized, for instance, by the velocity �eld V0(U0;W0) and the temperature �eld �0.
The inner product on the perturbation is

(u|ũ)=
∫
D

(uũ+ ww̃ + ��̃)|J (x)| d� (13)

The a1 coe�cient is then given by

a1 = (�u|ũ1) (14)

For an impulse disturbance of a scalar �eld, such as the temperature, at location xp,

�T(xp)=

(
v=0

�= ��(x − xp)

)
∀x∈D

(15)

with �(x) representing the Dirac function, it results from the scalar product that

a1 = (�T(xp)|ũ1)

=
∫
D

��(x − xp)�̃1|J (x)| d�

= ��̃1(xp)|J (xp)|

(16)

where |J (x)| is the Jacobian. The response amplitude to a disturbance is then directly linked
to the adjoint �eld.
In order to calculate the adjoint of the dominant eigenmode, two ways can be followed:

the discrete adjoint approach and the continuous adjoint approach. In the �rst method, one
works with the algebraic system that comes from the discretization of the �uid equations.
The nonlinear PDEs are discretized, linearized (or linearized, discretized) and transposed.
In the continuous approach [2], the adjoint system is obtained by integrating by parts the
linearized �ow equations; it is then discretized. The advantages and disadvantages of the
two approaches were widely developed by Giles and Pierce [23]. Of course, in the limit of
an in�nite grid resolution, the two approaches should converge to the correct solution. The
continuous approach is simpler to program and requires less memory unless pre-computation
and storage of the linearized matrix can be avoided [17]. This last procedure seems very
di�cult to be applied in the case of our spectral collocation code. The continuous approach
is then chosen in this work.

3. PHYSICAL AND MATHEMATICAL MODEL

The physical problem under consideration is the hydrodynamics of �ows occurring in a �oating
zone-crystal growth device in a zero-gravity environment. This technique consists in translating
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Figure 1. Geometry and coordinates system.

a feed rod through a heating coil; the material progressively melts and solidi�es on a seed as
a single crystal [24].
A simpli�ed model of the liquid bridge is adopted. The Newtonian liquid is maintained by

capillarity between two solid and isothermal planes at the uniform temperature Tm. The free
surface is taken to be straight and non-deformable. The hypothesis of invariance by rotation
leads to the axisymmetric con�guration presented in Figure 1, where er and ez are the radial
and axial unit vectors, respectively, r and z being the corresponding coordinates. The origin
O is located at the centre of the full liquid bridge. Then here, the domain D is de�ned by
(r; z)∈ [0; R] × [−H;H ]. The free surface is submitted to a steady heating �ux Q=Q0 q(z),
with Q0 the maximum heat �ux density. The non-dimensional �ux q(z) is symmetric about
the mid-plane de�ned by z=0.
The capillary convective �ows are governed by the Navier–Stokes and energy equations of

which the Boussinesq non-dimensional expressions are

@V
@t
+ (V · ∇)V=−∇P + Pr

(
∇2 − er

r2
)
V

@�
@t
+V · ∇�=∇2�

∇ ·V=0

(17)

The operators are de�ned as follows: ∇= er (@=@r) + ez (@=@z) and ∇2 =
(1=r)(@=@r)[(r(@=@r))]+@2=@z2. Writing V=Uer+W ez, one has also ∇ ·V=(1=r)[@(rU )=@r]+
(@W=@z) and V · ∇=U (@=@r) +W (@=@z). The length, velocity, pressure and time scales, re-
spectively, are R, �=R, ��2=R2 and R2=�, where � and � are the density and the thermal
di�usivity of the �uid, respectively. The temperature di�erence magnitude, 	T , is de�ned
from the imposed heat �ux and the thermal conductivity, �, 	T =Q0 R=�. Then, the reduced
temperature is �= (T − Tm)=	T , where Tm is the melting temperature. Non-dimensional pa-
rameters are introduced: the Marangoni (Ma= − (@�=@T )|TmR	T=��) and Prandtl (Pr= 	=�)
numbers, where � and �, 	, respectively, stand for the surface tension and dynamic, kinematic
viscosity. The Marangoni number is the ratio of the thermocapillary to thermal di�usion char-
acteristic velocities. The Prandtl number is the ratio of the thermal to momentum characteristic
di�usion times. The aspect ratio A=H=R is here �xed to 1. To complete the equations set (17),
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boundary conditions are speci�ed:

z= ± 1
{
V= 0 (no-slip conditions)

�=0 (imposed temperature)

r=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U =0 (non-deformable free surface)

@W
@r
= − Ma

@�
@z

fn(z) (stress condition)

@�
@r
= q(z) (heat �ux)

r=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U =0

@W
@r
=0 (axial symmetry conditions)

@�
@r
=0

(18)

Particular care must be taken to preserve the regularity of the model at the scale of the
continuous medium by writing appropriate �ux boundary conditions. For a complete discussion
of this problem, we refer the reader to References [19, 25]. Indeed, at both extremities, where
the free surface is in contact with the isothermal fusion/solidi�cation fronts, the supplied heat
�ux must cancel. We have thus chosen q(z)= (1 − z2)2 to model the lateral heating device.
In order to ful�l the no-slip condition on the solid boundaries, the �ux of the momentum
vertical component imposed by capillarity must also cancel. A simple way to regularize the
stress condition is to introduce a function such as fn(z)= (1−z2n)2, n being a positive integer,
here �xed to 13 according to the results of Ch�enier et al. [19, 25].

3.1. The linearized equations

After linearization around the steady-state U0 = (V0;�0), the equations for a perturbation
u=(v; �) are

@u
@t

∣∣∣∣
U0
=L(U0; u) (19)

within D:

@u
@t
=−(v · ∇)U0 − (V0 · ∇)u − @p

@r
+ Pr

(
	u − u

r2
)

@w
@t
=−(v · ∇)W0 − (V0 · ∇)w − @p

@z
+ Pr	w

@�
@t
=−(v · ∇)�0 − (V0 · ∇)�+	�

∇ · v=0

(20)
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and on the boundaries @D:

z= ± 1
{
v= 0

�=0

r=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u=0

@w
@r
= − Ma

@�
@z

fn(z)

@�
@r
=0

r=0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u=0

@w
@r
=0

@�
@r
=0

(21)

3.2. The adjoint system

In order to calculate the adjoint operator L̃(U0) as de�ned in Equation (11), we develop the
Hermitian inner product in cylindrical coordinates:

(L(U0; u)|ũ) =
∫∫

D

[(
−(v · ∇)U0 − (V0 · ∇)u − @p

@r
+ Pr

(
	u − u

r2
))

ũ

+
(

−(v · ∇)W0 − (V0 · ∇)w − @p
@z
+ Pr	w

)
w̃

+(−(v · ∇)�0 − (V0 · ∇)�+	�)�̃

− (∇ · v)p̃
]
r dr dz

(22)

Integration by parts leads to

(L(U0; u)|ũ) =
∫∫

D

[(
(V0 · ∇)ũ − ũ

@U0
@r

− w̃
@W0

@r
− �̃

@�0
@r

+
@p̃
@r
+ Pr

(
	ũ − ũ

r2

))
u

+
(
(V0 · ∇)w̃ − ũ

@U0
@z

− w̃
@W0

@z
− �̃

@�0
@z

+
@p̃
@z
+ Pr	w̃

)
w

+((V0 · ∇)�̃+	�̃)�

+ (∇ · ṽ)p
]
r dr dz

−
∫
@D

J · n d� (23)
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where n is the unit vector normal to the boundary @D of D, directed outwards, and
J= Jrer + Jzez, with

Jr =U0(uũ+ ww̃ + ��̃) + up̃+ ũp

+Pr
(
u
@ũ
@r

− ũ
@u
@r

)
+ Pr

(
w
@w̃
@r

− w̃
@w
@r

)
+ �

@�̃
@r

− �̃
@�
@r

(24)
Jz =W0(uũ+ ww̃ + ��̃) + wp̃+ w̃p

+Pr
(
u
@ũ
@z

− ũ
@u
@z

)
+ Pr

(
w
@w̃
@z

− w̃
@w
@z

)
+ �

@�̃
@z

− �̃
@�
@z

The boundary conditions of the adjoint system are given by
∫
@D J · n d�=0. Taking into

account the boundary conditions (18) and (21), it then follows that

• At r=0, ∫ 1

−1

[
Pr
(

−ũ
@u
@r
+ w

@w̃
@r

)
+ �

@�̃
@r
+ ũp

]
dz=0 (25)

This relation is satis�ed if

ũ=0;
@w̃
@r
=0;

@�̃
@r
=0 (26)

• At r=1,

∫ 1

−1

[
Pr
(

−ũ
@u
@r
+ w

@w̃
@r

− w̃
@w
@r

)
+ �

@�̃
@r
+ ũp

]
dz

=
∫ 1

−1

[
−Prũ @u

@r
+ Prw

@w̃
@r
+ PrMafn(z)w̃

@�
@z
+ �

@�̃
@r
+ ũp

]
dz

=[�w̃PrMafn(z)]︸ ︷︷ ︸
=0

+
∫ 1

−1

[(
p − Pr@u

@r

)
ũ+ Prw

@w̃
@r

− PrMa�
@w̃ fn(z)

@z
+ �

@�̃
@r

]
dz

=
∫ 1

−1

[(
p − Pr@u

@r

)
ũ+ Prw

@w̃
@r
+ �

(
@�̃
@r

− PrMa
@w̃ fn

@z

)]
dz

=0 (27)

This relation is satis�ed if

ũ=0;
@w̃
@r
=0;

@�̃
@r
=PrMa

@w̃ fn

@z
(28)
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• At last, from the relation at z= ± 1,
∫ 1

0

[
−Pr

(
ũ
@u
@z
+ w̃

@w
@z

)
− �̃

@�
@z
+ w̃p

]
dr=0 (29)

it can be deduced that, on these boundaries

ũ=0; w̃=0; �̃=0 (30)

The relation deduced from Equations (2) and (11),(
@u
@t

; ũ
)
= −

(
u;

@ũ
@t

)
+

@
@t
(u; ũ) (31)

leads to the adjoint equation,

− @ũ
@t
= L̃(U0; ũ) (32)

so that

@
@t
(u; ũ)=0 (33)

Note the sign change of the time which produces a reversal of causality in time-varying
problems so that the adjoint parabolic operator is well posed only if one integrates backwards
in time with initial conditions obtained at �nal time from the direct system. This backward
approach was used by Luchini and Bottaro [14, 15] in case of G�ortler vortices and Stokes’s
�rst problem.
Let

ũ(t)=
+∞∑
i=0

ãi exp(−�̃it)ũ (34)

be a solution of Equation (32). Substituting Equations (5) and (34) in Equation (33), the
bi-orthogonality relation (12) insures the well-known relation �̃i= �i.
In summary, the adjoint system is

@ũ
@t
+ (V0 · ∇)ũ − ũ

@U0
@r

− w̃
@W0

@r
− �̃

@�0
@r

=− @p̃
@r

− Pr
(
	ũ − ũ

r2

)
@w̃
@t
+ (V0 · ∇)w̃ − ũ

@U0
@z

− w̃
@W0

@z
− �̃

@�0
@z

=− @p̃
@z

− Pr	w̃

@�̃
@t
+ (V0 · ∇)�̃=−	�̃

∇ · ṽ=0

(35)
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with the following boundary conditions:

z= ± 1
⎧⎨
⎩
ṽ= 0

�̃=0

r=0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũ=0

@w̃
@r
=0

@�̃
@r
=0

r=1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ũ=0

@w̃
@r
=0

@�̃
@r
=PrMa

@w̃ fn

@z

(36)

4. NUMERICAL DETERMINATION OF THE RESPONSE AMPLITUDE

4.1. The numerical tools

In order to calculate the response amplitude, a1, through relations (8) or (9) and (14), com-
plementary numerical tools, described in detail in References [18, 19], are used. In systems
(20), (21) and (35), (36), the evaluation of the space derivatives is based on a pseudospec-
tral Chebyshev collocation method [26] with radial Gauss–Radau and axial Gauss–Lobatto
grids Nr × Nz, �xed to 70 × 100 in this study in agreement with the results of References
[18, 19]. A projection-di�usion algorithm is used to uncouple the velocity and pressure �elds
[27]. The resulting time ordinary di�erential system is solved by a usual second-order �nite
di�erence scheme with an implicit treatment of the di�usion terms. Stringent criteria, which
are detailed in Reference [28], have been applied to assess the overall accuracy of the results.
Correlated with a time-marching procedure (which supplies only stable steady or oscillatory
�ows), speci�c tools (based on a continuation process) have been implemented for drawing,
in the parameters space, the loci of the steady states, stable or not. The leading eigenmodes
of the linearized problem and of its adjoint system are computed using two codes based on
the Arnoldi’s method: one developed by ourselves and the other using the Arpack library
[29]. In the case of the adjoint system, time must be reversed as mentioned above, preventing
anti-dissipation e�ects when solving Equation (35), but the initial values are arbitrary here.

4.2. Stability map

The present results constitute a continuation of the study of Ch�enier et al. [19] in which
the linear stability of the thermocapillary �ow, at Pr=0:01, has been widely investigated.
In particular, due to the explicit introduction of a small length scale by the regularizing
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Figure 2. Stability map with respect to the Ma and Pr numbers values.

function fn, a sub-critical pitchfork bifurcation followed by saddle-nodes bifurcations on the
continuation curve was observed. The coexistence of multiple stable steady states, which are
either re�ection symmetric or not with respect to the mid-plane, was established. In this work,
the symmetric steady state, the dominant characteristic values of the linearized system and
the bifurcation threshold are followed with respect to the Prandtl number value leading to the
stability map in Figure 2.
Starting from the smallest Pr values, the stability map falls into several regions:

• Pr∈ [10−3; 3:4× 10−3]: Hopf bifurcations,
• Pr∈ [3:4× 10−3; 3:15× 10−2], Ma. 103: sub-critical pitchfork bifurcations,
• Pr∈ [1:9× 10−2; 3:15× 10−2], Ma& 103: pitchfork bifurcations,
• Pr∈ [4× 10−2; 10−1]: Hopf bifurcations,
• Pr∈ [9; 100]: Hopf bifurcations.

Some leading eigenvalues in the vicinity of the transition are given in Table I.
Some comments can be pointed out.

• For Pr=3:0×10−3, the real parts of the two �rst leading eigenvalues are close together
(see Table I) and cross at a co-dimension 2 point, explaining the change of bifurcation
type.

• For Pr∈ [1:9×10−2; 3:15×10−2], re�ection-symmetric stable steady states exist at low and
high Marangoni values. The schematic bifurcation diagram with respect to the Marangoni
number value, which was highlighted in Reference [19] at Pr=0:01, can now be com-
pleted, for the here concerned Pr values, as shown in Figure 3. The stable symmetric
steady state loses its stability via a sub-critical pitchfork bifurcation and becomes stable
again via another pitchfork bifurcation at a higher Marangoni value. On the two branches

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:947–972



958 O. BOUIZI AND C. DELCARTE

Table I. Leading eigenvalues of L and L̃ and their relative di�erence �.

Direct �d= �d + i!d Adjoint �a= �a + i!a

Prandtl Marangoni �d !d �a !a �

1:000× 102 5:660× 104 −1:2190× 10−2 1:2453× 102 −1:2295× 10−2 1:2453× 102 8× 10−5%
1:000× 101 9:260× 104 2:7881× 10−3 1:0866× 102 2:8134× 10−3 1:0866× 102 2× 10−5%
3:100× 10−2 1:500× 103 8:4271× 10−4 0.0000 8:3692× 10−4 0.0000 0:6%
1:000× 10−2 1:060× 102 1:7000× 10−4 0.0000 1:7050× 10−4 0.0000 0:3%
3:000× 10−3 2:250× 102 −7:1228× 10−3 0.0000 −6:6489× 10−3 0.0000 6%
3:000× 10−3 2:250× 102 −2:1170× 10−2 1:2894× 101 −2:2512× 10−2 1:2893× 101 0:01%
2:000× 10−3 1:240× 102 −1:3067× 10−2 8.6502 −1:4175× 10−2 8.6202 0.3%

Figure 3. Two scenaries with respect to the increasing Marangoni number value, at Pr=0:03. The solid
curves indicate stable steady states while the dashed curves correspond to unstable steady states. On the
left, the symmetric stable steady state becomes unstable via a sub-critical pitchfork bifurcation and �nds
its stability again through a super-critical pitchfork bifurcation. On the right, both pitchfork bifurcations
are sub-critical. On the curves issued from the �rst pitchfork bifurcation, corresponding to asymmetric

steady states, several saddle-nodes bifurcations occur [19].

of the continuation curve issued from the pitchfork bifurcation at low Marangoni value,
saddle nodes are encountered giving rise to stable asymmetric steady states.

• Around Pr=1, the �ow unsteadiness has not been reached; this con�rms Kasperski
et al.’s results [30], obtained by solving the time-dependent non-linear system.

• The Hopf bifurcations thresholds at high Marangoni number values are independent of
the Prandtl number value (except for Pr∈ [10−1; 9]), contrary to their linear behaviour
with respect to low Prandtl number values.

We shall check our adjoint approach before applying it in order to determine the most
sensitive loci to disturbances, for �ows corresponding to the various regions of the bifurcation
map.

4.3. Tools validation

The operators L(U0; u) and L̃(U0; ũ) must have the same set of eigenvalues; therefore, their
leading eigenvalues have to be equal. Table I gives these values, obtained with the two
Arnoldi procedures, for some pairs of Prandtl and Marangoni number values corresponding

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:947–972



SPATIAL SENSITIVITY OF INTERNAL FLOWS WITH FREE SURFACE 959

to the bifurcations regions in the parameters map: the agreement is quite good as shown by
their relative di�erence values �=(|�d − �a|)=|�a|.
The bi-orthogonality property was veri�ed by calculating the inner product of the direct

eigenbasis with the adjoint eigenbasis for the 11 �rst leading eigenvectors of each basis.
The bi-orthogonality is satis�ed to at least 10−4. Of course, while using the discrete adjoint
method, these properties are automatically veri�ed, but this does not prove the eigenvectors’
accuracy, which is linked to the discretization itself.

4.4. Validation of the method

We shall now compare the time-dependent and adjoint approaches on various disturbance
types.
Given

u(t) ∼
t→+∞ a1 exp(�1t)u1 (37)

the absolute value of the ratio

uip2 ; jp2 (T )
uip1 ; jp1 (T )

=
a1 (ip2; jp2)
a1 (ip1; jp1)

(38)

makes possible the comparison of the response, at the same large time T , to initial disturbances
at points (ip1; jp1) and (ip2; jp2), respectively.
The same ratio is calculated from the inner product:

a1 (ip2; jp2)
a1 (ip1; jp1)

=
(�u(ip1; jp1)|ũ1)
(�u(ip2; jp2)|ũ1) (39)

4.4.1. Disturbance at a local position of the temperature �eld near a stationary bifurcation
point. At the parameter values Pr=10−2 and Ma=104:4, the steady 2D thermocapillary �ow
loses its stability through a sub-critical pitchfork bifurcation [19].
Figure 4 shows the iso-level lines of, respectively, the steady temperature �eld, the temper-

ature component of the leading and corresponding adjoint eigenvectors, all normalized with
respect to their maximum absolute value. The solid curves designate positive temperatures
and the dash curves, negative temperatures.
In case of axisymmetric con�guration, Equation (16) is written as

a1 = (�T(rp; zp)|ũ1)

=
∫ 1

−1

∫ 1

0
��(r − rp)�(z − zp)�̃1r dr dz

= ��̃1(rp; zp)rp

(40)

Figure 5, which presents the iso-level lines of �̃1r, indicates that the most sensitive region to
temperature disturbance of the Dirac type is situated on the free surface, near the horizontal
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Figure 4. Steady temperature, temperature component of the leading and corresponding adjoint eigenvec-
tors, both normalized with their maximum absolute value, at Pr=10−2 and Ma=106. The numbered

points correspond to the loci where the time and adjoint approaches are compared.

Figure 5. Map of the steady �ow sensitivity to temperature disturbances of Dirac type
at Pr=10−2 and Ma=106. The numbered points correspond to the loci where the

time and adjoint approaches are compared.

mid-plane. Note that it does not coincide with the maximum of the direct leading eigenvector.
Regarding the computer cost, the calculation of ũ1 with Arpack approximately requires 105

calls to the solver of the time-dependent linearized system (35)–(36).
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Figure 6. Numerical sensitivity map of the steady �ow at Pr=10−2 and Ma=106. The numbered
points correspond to the loci where the time and adjoint approaches are compared.

The analytic Dirac distribution is replaced, in the numerical tools, by the Kronecker symbol.
The numerical perturbation, at t=0, �T(ip; jp), at a collocation point, (ip; jp), then, is

�T(ip; jp)=

⎛
⎜⎜⎝

ui; j =0

wi; j =0

�i;j = �i; ip�j; jp

⎞
⎟⎟⎠

∀(i; j)∈[0; Nr−1]×[0; Nz−1]

(41)

On the one hand, the coe�cient atemp; k1 , for each disturbance k=1; : : : ; 8, as indicated in
Figures 4–6, has been measured by solving the time-dependent linearized system Equation
(19) on a non-dimensional time T =450 (with a time step equal to 10−3). On the other hand,
the coe�cient aadj; k1 has been calculated by the integral relation

aadj1 = (�T(ip; jp)|ũ1)

=
∫̂ ∫

D

ˆ �i; ip�i; jp �̃1ri dri dzj

= r(ip)�̃1(ip; jp)
∫̂ ∫

D

ˆ �i; ip�i; jp dri dzj

(42)

where
∫̂ ∫

D̂
is the numerical integral value on a collocation non-uniform grid.

In Table II the amplitude coe�cient values atemp; k1 and aadj; k1 , respectively, normalized with
respect to their maximum absolute value, are arranged in descending order. The two ap-
proaches are in good agreement.
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Table II. Response coe�cients to temperature perturbations
of Dirac type, atemp1 and aadj1 , normalized with their respective

maximum absolute value, in descending order.

Disturbance k atemp; k1 =maxl a
temp; l
1 aadj; k1 =maxl a

adj; l
1

1 1.0000 1.0000
2 5:0683× 10−1 5:0124× 10−1

3 1:9290× 10−1 1:3916× 10−1

7 1:3366× 10−2 1:4164× 10−2

8 −5:4637× 10−3 −6:8331× 10−3

6 −1:3366× 10−2 −1:4164× 10−2

5 −2:6707× 10−2 −2:5543× 10−2

4 −4:2433× 10−2 −5:3174× 10−2

The aadj1 coe�cient was then calculated by the scalar product (42), for each element of
the disturbances set (41). The corresponding iso-level lines are shown in Figure 6 giving the
numerical sensitivity map.
The maps, Figures 5 and 6, are not the same because of the di�erence between the integral

of Dirac and Kronecker distributions. If the disturbances set (41) is replaced by

�T(ip; jp)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ui; j=0

wi; j=0

�i; j=
�i; ip�j; jp∫̂ ∫

D

ˆ �i; ip�i; jp dri dzj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀(i; j)∈[0; Nr−1]×[0; Nz−1]

(43)

the two maps will be the same.
It might be emphasized that the computation costs of, on the one hand, the leading adjoint

eigenmode and, by the way, the sensitivity map and, on the other hand, the time evolution
of only one perturbation are of the same order.

4.4.2. Disturbance at a local position of the temperature �eld near a Hopf bifurcation point.
For the parameters values Pr=2× 10−3 and Ma=124:8, two complex conjugate eigenvalues
cross the imaginary axis and the steady �ow becomes periodic via a Hopf bifurcation. The
tests have been performed at Ma=130, where (�1 =�1 + i!1 = 4:98× 10−2 + i8:85).
Figure 7 shows the iso-level lines of the steady temperature �eld and the temperature

component moduli of the leading and corresponding adjoint eigenvectors; the moduli have
been normalized by their maximum value.
Following Equation (16), the most sensitive zone to temperature disturbance is situated on

the free surface at z=0:25.
In order to obtain |atemp; k1 | for each k perturbation (labelled from 1 to 6 in Figure 7), we

used the linearized time-dependent code to calculate the �ow �eld during a non-dimensional
time equal to 60 (time step equal to 2× 10−4).
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Figure 7. Iso-level lines of the steady temperature �eld and the temperature component moduli of
the leading and corresponding adjoint eigenvectors at Pr=2 × 10−3 and Ma=130; the moduli
are normalized by their maximum value. The numbered points correspond to the loci where the

time and adjoint approaches are compared.

Table III. Response coe�cients, a1, in descending order,
to disturbances near a Hopf bifurcation, normalized with their

maximum modulus.

Disturbance k |atemp; k1 |=maxl|atemp; l1 | |aadj; k1 |=maxl|aadj; l1 |
1 1.0000 1.0000
2 6:2500× 10−1 5:3699× 10−1

3 2:4837× 10−1 2:5673× 10−1

4 7:3052× 10−2 1:1383× 10−1

5 3:0844× 10−2 7:1312× 10−2

6 1:2256× 10−2 4:1375× 10−2

This perturbation behaviour, in the vicinity of the bifurcation point, agrees with relation
(9), i.e.

u(t) ∼
t→+∞ 2 exp(�1t)[(ar

1u
r
1 − ai

1u
i
1) cos(!1t)− (ar

1u
i
1 + ai

1u
r
1) sin(!1t)] (44)

|atemp; k1 | was then estimated from a �t of the exponential envelope of one component of the
�ow �eld for a perturbation done at each labelled k point of the grid.
The coe�cient aadj; k1 was calculated in the same way as in the case of a stationary

bifurcation. Table III shows a comparison of the two approaches, showing their good
agreement.
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4.4.3. Velocity disturbance. Given an initial velocity disturbance �u,

�u=

⎛
⎜⎜⎝

ur; z= �u

wr; z= �w

�r; z=0

⎞
⎟⎟⎠

∀(r; z)∈D

(45)

a1 is then equal to

a1 = (�u|ũ1)

=
∫ 1

−1

∫ 1

0
(�uũ1 + �ww̃1)r dr dz

(46)

With the relations between the velocity components ũ1 and w̃1 and the stream function  ̃ 1

ũ1 =
@ ̃ 1
@z

; w̃1 = − 1
r
@r ̃ 1
@r

(47)

where the adjoint velocity vectors are tangent to the r ̃ 1 iso-lines.
Equation (46) becomes

a1 =
∫ 1

−1

∫ 1

0
(�uũ1 + �ww̃1)r dr dz

=
∫ 1

−1

∫ 1

0

(
�u

@ ̃
1

@z
+ �w

(
− 1

r

@r ̃
1

@r

))
r dr dz

=
∫ r=1

r=0

⎛
⎜⎝[r�u ̃ 1]z=1z=−1︸ ︷︷ ︸

=0

−
∫ 1

−1
 ̃
1

@r�u
@z

dz

⎞
⎟⎠ dr −

∫ z=1

z=−1

⎛
⎜⎝[r�w ̃

1
]r=1r=0︸ ︷︷ ︸

=0

−
∫ r=1

r=0
r ̃

1

@�w
@r

dr

⎞
⎟⎠ dz

=
∫ 1

−1

∫ 1

0

(
− @�u

@z
+

@�w
@r

)
 ̃
1
r dr dz

=−
∫ 1

−1

∫ 1

0
�! ̃

1
r dr dz (48)

where �! is the vorticity of the perturbation. Therefore, velocity and vorticity sources in the
�ow are, respectively, weighted by the adjoint velocity �eld and the adjoint stream function.
The steady state at Pr=10−2 and Ma=106 has been disturbed by a solenoidal velocity

�eld since it is expanded on divergence-free eigenvectors. The perturbation is de�ned as

�Ug(rp; zp)=
(∇ ×A(rp; zp)

0

)
(49)

with

A=(0; A’; 0) (50)
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Table IV. Response coe�cients, atemp1 and aadj1 , normal-
ized with their maximum absolute value, in descending
order in case of Gaussian velocity perturbations.

Perturbation k atemp; k1 =maxl a
temp; l
1 aadj; k1 =maxl a

adj; l
1

1 2:0907× 10−1 2:0884× 10−1

2 −1:4891× 10−1 −1:4882× 10−1

3 −5:4658× 10−2 −5:5459× 10−2

4 −2:2329× 10−2 −2:2314× 10−2

5 −1:7178× 10−2 −1:7200× 10−2

6 −1:0000 −1:0000
7 −3:7769× 10−1 −3:7749× 10−1

8 −1:0000 −1:0000

A’ has been chosen as the following Gaussian function centred on the collocation point (rp; zp)
and cancelling on the boundaries

A’(rp; zp)=
1


r2(1− r)2(z2 − 1)2e�((r−rp)2+(z−zp)2) (51)

so that the velocity perturbation �eld is

�Ug(rp; zp)=

⎛
⎜⎜⎝

ur; z

wr; z

�r; z

⎞
⎟⎟⎠

∀(r; z)∈D

(52)

with

ur; z =− 1


2r2(1− r)2(z2 − 1)[2z + �(z − zp)(z2 − 1)]e�((r−rp)2+(z−zp)2)

wr; z =
1


r(1− r)(z2 − 1)2[3− 5r + 2�r(r − rp)(1− r)]e�((r−rp)2+(z−zp)2)

�r; z =0

(53)

where


=
√
(r2p(1− rp)2(z2p − 1)zp)2 + (rp(1− rp)(z2p − 1)2(3− 5rp))2 (54)

and � is here equal to −10−2. In Table IV the normalized response amplitudes, respectively,
obtained with the time-dependent code and the inner product (13) are given.
Figure 8 presents |aadj; k1 =maxl a

adj; l
1 | iso-lines corresponding to disturbances at all collocation

points; owing to the non uniformity of the grid, each perturbation was normalized by its
associated kinetic energy. The most sensible point is situated near the symmetry axis.
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Figure 8. Sensitivity map of the steady state to the leading eigenmode at Pr=10−2 and Ma=106, for
the perturbations set �Ug(ip; jp), normalized with their associated kinetic energy.

5. APPLICATION TO THE STABILITY STUDY

One of the purposes of our method is to help the understanding of the instability mechanisms.
We therefore, now, apply it to the four regions, distinguished above on the stability map of
Figure 2, which correspond to transitions of the stable steady state to an unstable steady �ow
(sub-critical pitchfork bifurcation) or to a periodic steady �ow (Hopf bifurcation).
Figures 9 and 10 depict components of the steady �ows �elds for four pairs of Pr–Ma

values, related to the regions under consideration. The solid curves of the stream function
designate counter-clockwise circulation and the dash curves, clockwise circulation. The solid
contours of the vorticity �eld are related to positive vorticity, and the dash contours to negative
vorticity. Figure 11 shows the maps of sensitivity,  ̃

1
r, to vorticity disturbances. The maps of

sensitivity to perturbations of the Dirac type in temperature, �̃1r, have also been calculated,
but are not shown here. The crosses and circles in the �gures indicate the points corresponding
to the largest response to temperature and vorticity disturbances, respectively.
In case of temperature disturbances, the most sensitive point is always situated on the free

surface. Distinction must be made between high and low Prandtl number values.

• At Pr¿1, the most sensitive location coincides with the maximum value of the steady-
state temperature. The most sensitive region to vorticity disturbance is situated in the
middle of the rotating cells, but nothing can be pointed out there neither in the �elds
components of the �ow nor with the leading eigenvector, nor in the results of the energy
analysis performed by Bouizi [28] as introduced by Wanschura et al. [31].

• At Pr¡1, the most sensitive location to perturbation in temperature is not very far from
the temperature maximum of the steady �ow. However, it seems linked to the vorticity
tongue, which is advected from the solid boundaries and con�ned, near the mid-plane,
between the main cell, of opposite vorticity sign, and the free surface; a Fj
rt
ft-like
necessary criterion for instability [32] is here ful�lled.
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Figure 9. Temperature �0, stream function �0 and vorticity �’0 of the stationary �eld U0. The
crosses and circles indicate the points corresponding to the largest response to temperature and

vorticity disturbances, respectively.

The sensitive location to disturbances in vorticity di�ers according to the transition type
as shown in Figure 11. In the case of Hopf bifurcation, it is situated near the solid fronts
in the vorticity tongue issued from the solid boundaries, while, in the case of pitchfork
bifurcation, it is located at the heart of the liquid bridge near the zero iso-level of the
stream function.

This di�erence between high and low �ow regimes was argued by Kasperski et al. [30].
They demonstrated that the high-Pr instability is purely hydrothermal, while its origin is
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Figure 10. Temperature �0, stream function �0 and vorticity �’0 of the stationary �eld U0. The
crosses and circles indicate the points corresponding to the largest response to temperature and

vorticity disturbances, respectively.

hydrodynamics in low-Pr �ows. Referring to the above analysis of the stability map of
Figure 2, the behaviour of the Ma stability thresholds with respect to the Pr values agrees with
the thermal and hydrodynamic nature of the �ow regime at Pr¿1 and Pr¡1, respectively.
This was also con�rmed with the evaluation of the kinetic and thermal energies balances
[28]. The sensitivities at high Pr are in accordance with these results. At low Pr values, the
sensitivity analysis of Hopf transitions exhibits the predominant part taken by the vorticity
tongue advected from the solid surfaces. Previous works [19, 25] have proved the impact,
on the global �ow structure, of local scales, explicitly introduced by the vorticity singularity
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Figure 11. Adjoint stream function  ̃ 1r. The circles indicate the points corresponding to the largest
response to vorticity disturbance.

treatment at the junction of the free surface with the solid fronts. More surprising is the spatial
sensitivity of the response to vorticity disturbance in case of pitchfork bifurcation.

6. APPLICATION TO THE FLOW CONTROL

As we have seen in the previous section, the most sensitive location, in case of temperature
disturbance, is situated on the free surface. We will now explain how the method can help
the experimenter to control stationary disturbance of the steady �ow.
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Suppose that we are in the vicinity of the parameter critical value and that the linear system
approximation (20)–(21) is valid. Let us assume a time-dependent �ow U(t), initially steady,
which has lost its stability through a stationary bifurcation. This �ow can be written as the
linear superposition of the, both known, steady �ow U0 and normalized leading stationary
(i.e. �1 is real) perturbation u1e�1t . Then, we can write

U(r; z; t)=U0(r; z) + a1u1(r; z)e�1t (55)

In order to suppress the perturbation using a feedback control, we have to evaluate the
coe�cient a1. Measuring, at time t= tm and at position (rm; zm), one component of the �ow,
for instance the temperature, we obtain

a1 =
�(rm; zm; tm)−�0(rm; zm; tm)

�1(rm; zm)e�1tm
(56)

The way to restore the �ow’s stability is to apply an opposite perturbation, at time t= ts,
during a time step �ts. For t¿ts + �ts, Equation (55) then becomes

U(r; z; t)=U0(r; z) + a1u1(r; z)e�1t +
∫ ts+�ts

ts
b1(�)u1(r; z)e�1(t−�) d� (57)

where b1 is an unknown function.
Thus, U(r; z; t)=U0(r; z) only if

a1 +
∫ ts+�ts

ts
b1(�)e−�1� d�=0 (58)

The control applied by the experimenter has a spatial normalized shape T(r; z) and an
amplitude �, either depending or not on the time. Referring to Equation (14), the control
perturbation is related to the function b1 at time ts + �ts, by the equation∫ ts+�ts

ts
(�(�)T; ũ1)e�1(ts+�ts−�) d�=

∫ ts+�ts

ts
b1(�)e�1(ts+�ts−�) d� (59)

The amplitude �(t) can be chosen such that

�(t)=
b1(t)
(T; ũ1)

(60)

b1(t) being an arbitrary function provided it satis�es the integral relation (58).
Equation (60) exhibits that the amplitude is inversely proportional to the �ow sensitivity to

the control perturbation T. It means that the higher the sensitivity of the �ow to the applied
control perturbation, the smaller the amplitude of the control perturbation.

7. CONCLUSION

We developed and validated a tool for computing sensitivity �elds to linear perturbations of
steady �ows in the vicinity of bifurcation points. The sensitivity maps and, in particular, the
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most sensitive loci to disturbances are directly related to the adjoint �elds in case of distur-
bances at a local position. In case of Gaussian perturbations, they are obtained through inner
products of the perturbations components with their related adjoint �elds; the corresponding
computing cost is negligible. The CPU cost and memory requirement to calculate, on the one
hand, the leading adjoint eigenmode and, on the other hand, the time evolution of only one
perturbation of the steady state are of the same order.
We applied the method to thermocapillary �ows in liquid bridge submitted to a lateral heat

�ux. The associated adjoint linearized Navier–Stokes equations and boundary conditions were
established.
In case of low Prandtl number values, strong sensitivity areas are situated on or near

vorticity tongues, which are advected from the region near the junction of the free surface
with the solid fronts, in agreement with the results published in References [19, 25].
We explained how an experimenter could apply the method to control the stationary insta-

bility of the thermocapillary �ow by locally altering the temperature at optimal locations.
The extension of the method to the control of oscillatory perturbations and to the study of

3D perturbations should be straightforward.
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